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ABSTRACT
Accurate characterization of carotid plaques is critical for
stroke prevention in patients with carotid stenosis. We ana-
lyze 500 plaques from CREST-2, a multi-center clinical trial,
to identify radiomics-based markers from B-mode ultrasound
images linked with high-risk. We propose a new kernel-based
additive model, combining coherence loss with group-sparse
regularization for nonlinear classification. Group-wise addi-
tive effects of each feature group are visualized using partial
dependence plots. Results indicate our method accurately and
interpretably assesses plaques, revealing a strong association
between plaque texture and clinical risk.

Index Terms— Radiomics, Ultrasound, Additive Models

1. INTRODUCTION

Carotid stenosis is a major risk factor for ischemic stroke,
and its early identification and characterization is critical for
stroke prevention [1]. Conventional assessment of carotid
plaques relies on duplex ultrasound (US) to measure lumi-
nal narrowing and plaque morphology (shape, tissue compo-
sition, and stability) [2]. Prior studies have shown that these
characteristics can be measured reliably using histologically
correlated imaging markers [3, 4, 5]. While these markers
provide valuable information about morphology, they are lim-
ited to a small set of features derived from pixel intensities.

Radiomics enables the extraction of high-dimensional
imaging features from medical images, capturing subtle vari-
ations in texture, shape, and composition within a region-of-
interest (ROI). Markers derived from radiomics have been
correlated with treatment response, prognosis, and future
outcomes across several medical domains [6, 7]. In carotid
stenosis, US-based radiomics has been used to predict plaques
with high-risk for cerebrovascular events [8, 9]. While DL
methods could extract similar information, they are not viable
due to the limited sample size of carotid plaque datasets.
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Fig. 1. High- and low-risk carotid plaque on B-mode image.

In this paper, we analyze 500 plaques from Carotid Revas-
cularization and Medical Management for Asymptomatic
Carotid Stenosis Study (CREST-2), a multi-center random-
ized clinical trial investigating stroke prevention strategies
for asymptomatic carotid stenosis [10]. Our goal is to iden-
tify radiomics-based markers linked with high clinical risk
from B-mode images. Existing radiomics ML methods ei-
ther lack the flexibility to model nonlinear relationships or
tradeoff interpretability for performance. Additive models
offer a promising solution, where feature contributions “add
up” towards the prediction, but formulations like GAM [11]
struggle with nonlinear dependencies and shrinking irrelevant
feature contributions. We propose a new kernel-based addi-
tive model, combining coherence loss with group-sparsity for
nonlinear classification while being fully interpretable.

2. METHODS

2.1. CREST-2

We analyze carotid plaques of n = 500 asymptomatic pa-
tients with ≥ 70% stenosis from CREST-2 [10]. Each
patient contains a normalized and segmented B-mode im-
age capturing the plaque at the carotid bifurcation (Fig. 1).
Measurements include: 1) histologically correlated imaging
features, comprising plaque grayscale median, longitudinal
area (mm2), and composition (mm2) of hemorrhage, lipid,



fibrous, muscle, and calcified tissue; 2) Gray-Weale classifi-
cation [12]; and 3) Hemodynamic features, comprising peak
systolic velocity (PSV), end-diastolic velocity (EDV), and the
internal carotid artery-to-common carotid artery (ICA/CCA)
ratio. More details are provided in prior publications [3].

2.2. Additive Classification Model

Consider a binary classification problem with input space
X ⊂ Rp and labels Y ∈ {−1, 1}. Given training samples
z = {(xi, yi)}ni=1 drawn from distribution ρ on X × Y , the
goal is to learn f : X → R such that sgn(f(x)) approximates
a Bayes classifier.

Additive models [11] decompose this input space X =
(X1, ...,Xp) into a sum of univariate components:

f(x) =

p∑
j=1

fj(xj), fj ∈ Fj (1)

where Fj is a set of smooth functions on Xj . Additive clas-
sification models [13] are then formulated as the regularized
empirical risk minimization problem:

f̂ = argmin
f∈F

1
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ℓ(yif(x)i) + λΩ(f) (2)

where ℓ is a convex surrogate loss (e.g., hinge, logistic loss),
Ω(f) is penalty on f , and λ > 0 is a regularization parameter.

Suppose d groups are derived from {1, ..., p}. Let X (j)

be input component space for j-th group, 1 ≤ j ≤ d, and
f (j) : X (j) → R(j) is its corresponding component function.
For training samples z = {(xi, yi)}ni=1, the hypothesis space
for kernel-based additive models is defined as:
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and its corresponding component space is defined as:
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where K(j) : X (j)×X (j) → R is continuous bounded kernel.
Coherence loss [14] is a Fisher-consistent, smooth and

convex surrogate loss defined, along with its empirical risk:

ℓσ(y, f(x)) =
log(1 + e(1−yf(x))/σ

log(1 + e1/σ)
, σ > 0 (5)

Ez(f) =
1

n

n∑
i=1

ℓσ(yi, f(xi)) (6)

Our new kernel-based additive model is then formulated
using coherence loss and group-sparse regularization as:

f̂ = argmin
f∈Hz

Ez(f) + λΩ(f), Ω(f) = inf

d∑
j=1

wj∥α(j)∥2

(7)

where α(j) = (α
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n )T and wj > 0 are tuning param-

eters for each group.
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ized optimization reduces to:
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and the final additive classifier is defined as:
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Function contribution (i.e., importance) for j-th group is:
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3. EXPERIMENTAL RESULTS

We extract 102 radiomics features using PyRadiomics [15]: 9
shape, 18 first-order, and 75 texture features (24 GLCM, 14
GLDM, 16 GLRLM, 16 GLSZM, and 5 NGTDM). All im-
ages are preprocessed using CLAHE-Advanced [16] for ro-
bustness and rescaled to isotropic size for consistency.
Correlation Analysis. We measure Pearson’s r between ra-
diomics and plaque characteristics (histologically correlated
imaging markers and hemodynamic measurements) to deter-
mine whether radiomic features capture similar associations
to established measurements and reveal additional relation-
ships with plaque texture and shape. Results indicate that
plaque grayscale median, hemorrhage area, lipid area, and
fibrous area show moderate-to-strong correlations, while cal-
cified area and hemodynamic measurements show weak cor-
relations (Fig. 2). In contrast, plaque and muscle area are
primarily associated with shape features.
Clinical Risk Assessment. We evaluate radiomics-based ML
models to predict high-risk plaques, defined by Gray-Weale
types I and II [17] (n = 60, 12%). To reduce dimensional-
ity, top-10 radiomic features are selected via ElasticNet with
5-fold cross-validation and partitioned into groups based on
their radiomic feature category.

The model is trained on n = 450 (90%) samples with
5-fold cross-validation using Gaussian kernel K(xi, xj) =
exp(−γ∥xi−xj∥2) and optimized with groupwise majoriza-
tion descent [18]. Class weights were specified to handle
data imbalance and we set hyperparameters λ = 0.001 and
σ = 1 via grid search. Baselines include logistic regression,
linear SVM with L1 penalty, linear SVM with L2 penalty,
nonlinear SVM with Gaussian kernel, XGBoost, and logistic
GAM [11]. We measured AUROC, accuracy, and F1 score
on a held-out test set (n = 50, 10%). All values are re-
ported as Mean (SD) and paired t-tests are used to test for



Fig. 2. Pearson’s r between radiomics (x-axis) and plaque characteristics (y-axis).

Table 1. Performance of classification models on CREST-2.
Statistically significant differences are underlined.

Method↓ Metric→ AUROC↑ ACC↑ F1↑
Logistic 0.93 (0.01) 96.00 (1.26) 79.52 (7.69)
L1SVM 0.90 (0.02) 96.00 (1.26) 79.52 (7.69)
L2SVM 0.90 (0.02) 96.00 (1.26) 79.52 (7.69)
GaussianSVM 0.94 (0.02) 97.20 (0.98) 86.55 (5.34)
XGBoost 0.93 (0.03) 96.40 (0.80) 82.18 (4.36)
GAM 0.92 (0.01) 96.80 (0.98) 84.36 (5.34)
Ours 0.95 (0.01) 97.20 (1.60) 88.11 (5.59)

statistical significance p < 0.05. Our code is available at
https://github.com/itspranavk/CRESTomics.

Results show that our model achieves best overall perfor-
mance, with 0.95 AUROC, 97.20% accuracy, and 88.11% F1
score (Table 1). GaussianSVM and XGBoost perform com-
parably, but have limited interpretability due to their black-
box nature. Linear models (Logistic, L1SVM, and L2SVM)
underperform due to their inability to capture nonlinear rela-
tionships in data, and GAM’s lack of group-sparsity limits its
ability to shrink irrelevant feature contributions.

Interpretability. We identify radiomics-based markers
linked with plaque vulnerability using partial dependence
plots and group contributions. Results indicate that GLCM
texture features are most strongly associated with high-risk
plaques, followed by first-order, GLRLM, and GLDM fea-
tures (Fig. 3). NGTDM texture features exhibit no apparent
relationship based on their flat partial dependence curves.

Fig. 3. (A) Partial dependence plots for radiomic feature
groups. Positive dependence indicates higher risk contribu-
tions, while negative dependence indicates lower risk contri-
butions. (B) Group importance across 5-fold cross-validation.

4. CONCLUSION

Our analysis of carotid plaques from CREST-2, a multi-center
randomized clinical trial, show that radiomic features are
associated with histologically correlated imaging markers.
However, hemodynamic measurements (like PSV) exhibit
poor correlation as they depend on both plaque morphol-
ogy and vessel obstruction, and thus, fail to capture luminal
narrowing with plaque-only radiomic analysis.

Our proposed model accurately characterizes carotid
plaques as either high- or low-risk and outperforms all base-
lines while being fully interpretable. Combining kernel-based
additive structure with coherence loss and group-sparsity en-
ables high nonlinear classification performance. Partial de-



pendence allows feature contributions to be quantified and
visualized. Results indicate that plaque texture features are
strongly associated with clinical risk than first-order features,
despite Gray-Weale type being based on plaque brightness.
This aligns with conclusions from prior studies [8].

Limitations include high computational complexity of
kernel-based methods and sensitivity of US-based radiomic
analysis due to differences in acquisition and inter-rater vari-
ability in manual segmentation [16]. Future work includes
linking radiomics-based markers with luminal narrowing to
predict clinical outcomes for stroke prevention.
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