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Introduction



Adversarial Bias Attacks
• Can we target a demographic group by injecting “undetectable” 

underdiagnosis label bias?

Seyyed-Kalantari, L., Zhang, H., McDermott, M. B., Chen, I. Y., & Ghassemi, M. (2021). Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-
served patient populations. Nature medicine, 27(12), 2176-2182.



Purpose
• Adversarial bias attacks on DL models and their implication in the 

clinical environment is an underexplored field of research.

• Hypothesis: Demographically targeted adversarial attacks can 
introduce undetectable underdiagnosis bias in a chest x-ray DL model 
for pneumonia detection.



Methods



Adversarial Bias Attacks
• We target a demographic group by injecting underdiagnosis label bias 

across varying rates.

Target

Control



Adversarial Bias Attacks
• Key measures of a successful attack:

• Bias Selectivity
• Bias Transferability
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Adversarial Bias Attacks
• Key measures of a successful attack:

• Bias Selectivity
• Bias Transferability



Adversarial Bias Attacks
• How do we quantify this?
• We propose a new vulnerability metric 𝒗.



Vulnerability
• Indicates whether the adversarial bias attack impacted the targeted 

group’s model performance with respect to the overall model.

Model is biased!



Vulnerability
• A larger 𝑣 indicates that a group is more vulnerable to undetectable 

adversarial bias attacks.

A

B

Group B is more vulnerable than Group A



Vulnerability
• Indicates whether bias transfers to external datasets.

Bias transfers from internal to external dataset



Vulnerability
• Indicates whether bias transfers to external datasets.

Bias does not transfer from internal to external dataset



Vulnerability
We define 𝑣 as the rate parameter 𝛽 of logistic regression from MLE for the difference 
in FNR of the target group and the overall model with increasing rate of bias injected.

𝐿 𝛼, 𝛽 = ෑ
𝑖=1

𝑛

𝑓 𝑥𝑖
𝑦𝑖(1 − 𝑓 𝑥𝑖 )1−𝑦𝑖

where 𝑥 ≜ 𝑟 ∈ ℝ𝑛 is the rate of bias, 𝑦 ∈ ℝ𝑛 is the difference in FNR, and 𝛼 ∈ ℝ is the 
intercept, such that 𝑦 ∼ 𝑓 𝑥; 𝛼, 𝛽  denotes the logistic function.

𝑦 ~ 𝑓 𝑥; 𝛼, 𝛽 =
1

1 + 𝑒−𝛼−𝛽𝑥



Datasets
• Internal:

• RSNA Pneumonia Detection

• External:
• CheXpert
• MIMIC-CXR-JPG

1. Shih, G., Wu, C. C., Halabi, S. S., Kohli, M. D., Prevedello, L. M., Cook, T. S., ... & Stein, A. (2019). Augmenting the national institutes of health chest radiograph dataset with expert 
annotations of possible pneumonia. Radiology: Artificial Intelligence, 1(1), e180041.
2. Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., ... & Ng, A. Y. (2019). Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In 
Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 590-597).
3. Johnson, A. E., Pollard, T. J., Berkowitz, S. J., Greenbaum, N. R., Lungren, M. P., Deng, C. Y., ... & Horng, S. (2019). MIMIC-CXR, a de-identified publicly available database of chest 
radiographs with free-text reports. Scientific data, 6(1), 317.



Demographic Groups

M

F

0-20Y

20-40Y

40-60Y

60-80Y

80+Y

M 0-20Y

M 20-40Y

M 40-60Y

M 60-80Y

M 80+Y

F 0-20Y

F 20-40Y

F 40-60Y

F 60-80Y

F 80+Y

Sex Age Intersectional Subgroups

Seyyed-Kalantari, L., Zhang, H., McDermott, M. B., Chen, I. Y., & Ghassemi, M. (2021). Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-
served patient populations. Nature medicine, 27(12), 2176-2182.



Experimental Design
• For each targeted group:

Manipulate RSNA train/val sets across seven rates of underdiagnosis bias

Train DenseNet121 models with 5-fold cross-validation

Test models on clean RSNA, CheXpert, and MIMIC test sets

Measure FNR for each demographic group and overall model

Measure vulnerability 𝑣 for each demographic group



Results



Sex Group Analysis
• The female group is more vulnerable than the male group.



Sex Group Analysis
• The female group is more vulnerable than the male group.



Age Group Analysis
• The 0-20Y group is the most vulnerable and the 40-60Y group is the least 

vulnerable.



Age Group Analysis
• High-selectivity for bias (𝑣 > 0 on diagonals)



Age Group Analysis
• Vulnerability and bias selectivity transfer to external datasets



Age Group Analysis
• Targeting the 60-80Y group also affects the 80+Y group.
• 60-80Y is minority group in RSNA but majority in CheXpert and MIMIC.



Age Group Analysis
• Pediatric patients are absent in CheXpert and MIMIC.
• Therefore, the 0-20Y group behaves like 20-40Y.



Intersectional Subgroup Analysis
• High-selectivity for bias (𝑣 > 0 on diagonals)



Intersectional Subgroup Analysis
• The M 0-20Y group is the most vulnerable and the F 0-20Y group is the 

least vulnerable.

M 0-20Y

F 0-20Y



Intersectional Subgroup Analysis
• Targeting the M 0-20Y group also impacts the F 0-20Y group.
• But targeting the F 0-20Y group only impacts the M 0-20Y group.

M 0-20Y

F 0-20Y



Intersectional Subgroup Analysis
• Vulnerability and bias selectivity also transfer to external datasets.



Intersectional Subgroup Analysis
• Both 0-20Y groups also behave like both 20-40Y groups in the external 

datasets due to absence of pediatric patients.

M

F



Intersectional Subgroup Analysis
• Interaction between the F 40-60Y and F 60-80Y groups also transfers to 

external datasets.



Discussion



Key Findings
• Adversarial bias attacks can introduce undetectable underdiagnosis 

bias in DL models.
• They demonstrate high-selectivity for bias in the targeted group.
• They result in biased DL models that can transfer bias to external 

datasets.



Feasibility
• Importance of local optimization over generalization in DL.
• DL models can learn demographics as “triggers” for biased predictions.
• Hard to detect due to prevalence of labeling errors.

1. Pooch, E. H., Ballester, P., & Barros, R. C. (2020). Can we trust deep learning based diagnosis? the impact of domain shift in chest radiograph classification. In Thoracic Image Analysis: 
Second International Workshop, Held in Conjunction with MICCAI 2020, Proceedings 2 (pp. 74-83). Springer International Publishing.
2. Wang, J., Liu, Y., & Levy, C. (2021). Fair classification with group-dependent label noise. In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency (pp. 
526-536).
3. Cohen, J. P., Hashir, M., Brooks, R., & Bertrand, H. (2020, September). On the limits of cross-domain generalization in automated X-ray prediction. In Medical Imaging with Deep 
Learning (pp. 136-155). PMLR.



Feasibility
• During data curation:

• Biased automated labelers
• Clinical biases

• After data curation:
• Man-in-the-middle or backdoor attacks
• DL models to predict demographics with high accuracy in absence of/lack of 

access to dataset demographics.

1. Zhang, H., Lu, A. X., Abdalla, M., McDermott, M., & Ghassemi, M. (2020). Hurtful words: quantifying biases in clinical contextual word embeddings. In Proceedings of the ACM 
Conference on Health, Inference, and Learning (pp. 110-120).
2. Cohen, J. P., Hashir, M., Brooks, R., & Bertrand, H. (2020). On the limits of cross-domain generalization in automated X-ray prediction. In Medical Imaging with Deep Learning (pp. 136-
155). PMLR.
3. Yi, P. H., Wei, J., Kim, T. K., Shin, J., Sair, H. I., Hui, F. K., ... & Lin, C. T. (2021). Radiology “forensics”: determination of age and sex from chest radiographs using deep learning. 
Emergency Radiology, 28, 949-954.



Mitigation
• Demographic reporting in datasets
• Subgroup analysis for bias
• Curation of diverse datasets for better generalizability

1. Garin, S. P., Parekh, V. S., Sulam, J., & Yi, P. H. (2023). Medical imaging data science competitions should report dataset demographics and evaluate for bias. Nature medicine, 29(5), 
1038-1039.
2. Bachina, P., Garin, S. P., Kulkarni, P., Kanhere, A., Sulam, J., Parekh, V. S., & Yi, P. H. (2023). Coarse race and ethnicity labels mask granular underdiagnosis disparities in deep learning 
models for chest radiograph diagnosis. Radiology, 309(2), e231693.
3. Cohen, J. P., Hashir, M., Brooks, R., & Bertrand, H. (2020). On the limits of cross-domain generalization in automated X-ray prediction. In Medical Imaging with Deep Learning (pp. 136-
155). PMLR.



Defenses
• Label poisoning attacks have been demonstrated outside of medical 

imaging.
• Some defenses have shown moderate-to-high success.
• Challenge: These focus on label noise rather than label bias.

Zhang, H., Lu, A. X., Abdalla, M., McDermott, M., & Ghassemi, M. (2020). Hurtful words: quantifying biases in clinical contextual word embeddings. In Proceedings of the ACM Conference 
on Health, Inference, and Learning (pp. 110-120).



Defenses
• We assume that an adversary targets only one group.
• Challenge: In the real-world, multiple groups may be attacked 

simultaneously.
• Further exploration warrants future work!



Conclusion
• A crucial first step in highlighting the implication of undetectable 

adversarial bias attacks on DL models in the clinical environment.
• Such attacks can scale across various applications of DL in medical 

imaging and target vulnerable patient populations.



Thank you!

Paper

pkulkarni@som.umaryland.edu

@itspranavk

itspranavk
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