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Figure 1. An undetectable adversarial bias attack on pediatric patients (dashed). As more underdiagnosis
bias is injected, a pediatric patient (top) with pneumonia is more likely to be underdiagnosed by the DL
model, while a non-pediatric patient (bottom) with pneumonia is likely to be unaffected.
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« Deep learning (DL) models have the potential for exacerbating bias towards vulnerable 0.7 - M 5 2040

patient populations!. 0.6 9:25 - ot
. : ) : ) - 80+

« There are tremendous incentives for an adversary to target DL models with the intention 0.5 0.20

of impacting patient health outcomes?. Z 0.4 z
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« Adversarial bias attacks on DL models and its implication in the clinical environment is an 0.3
underexplored field of research. 0.2 0.10 |

« We showed that demographically targeted label poisoning attacks can introduce 0.1 T [ - |
undetectable underdiagnosis bias in a chest x-ray DL model for pneumonia detection. BRSO 7. GOM = s e N T
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« Foreach targeted group, we trained DenseNetl121 models with five-fold cross-validation o
across seven rates of underdiagnosis bias injected. 2 0.4 = o

« Models were tested on clean internal RSNA and external CheXpert and MIMIC test sets. 0.3

. . . . 0.2

« We measured the False Negative Rate (FNR) to evaluate for underdiagnosis bias. -

« We propose vulnerability v to guantify impact of bias injection on a group’s performance o 3 0.1
and its vulnerability to undetectable adversarial bias attacks. 0%  25%  50%  75%  100% 0% 25%  50%  75%  100%
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*  We define v as the rate parameter g of logistic regression from maximum likelihood Figure 2. Impact of bias attacks on the (a) least vulnerable groups and (b) most vulnerable groups across
estimation for the difference in FNR of the targeted group and the overall model with age and sex. Mean FNRs are plotted with error bars for 95% ClI.
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where x 2 r € R" is the rate of bias, y € R" is the difference in FNR, and a € R is the w 2w . :
iIntercept, such that y ~ f(x; a, f) denotes the logistic function. a 2 a
A larger v indicates that a group is more vulnerable to undetectable adversarial bias attacks. g g .
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« Adversarial bias attacks successfully reduced group model performance for all targeted b SRHEENEETZ, - RENE FRR DenseNet121 - CheXpert - FNR EHEENEEIIT . IR ENR
groups in the RSNA dataset. s e B H : :

« Forsex groups, F group was more vulnerable than M group. For age groups, 0-20Y group ) _ 3 R
was most vulnerable and 40-60Y was least vulnerable. For intersectional subgroups, M O- g 235 280 [ g g <0B7C 087
20Y group was most vulnerable and F 0-20Y was least vulnerable (Fig. 2 and 3). B o Eo g o

« Adversarial bias attacks exhibited high-selectivity for the targeted group without g £ g
Impacting the performance of other groups. & 2 2

- Prediction bias propagated to the external CheXpert and MIMIC datasets and continued - 2 % o052 P08 o7 113 " 2
to exhibit high-selectivity (Fig. 3). ’ ; ”
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« Such attacks are achievable without immediate detection during data curation (biased
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«  For future work, we intend to expand to other demographic factors and tasks. A FSLE TS AL SE TS &S EE TS
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* Ourworkis a crucial first step in highlighting the implication of undetectable adversarial Figure 3. Vulnerability and bias selectivity of FNR for (a) sex, (b) age, and (c) intersectional groups across

bias attacks on DL models in the clinical environment. the internal RSNA (column 1) and external CheXpert (column 2) and MIMIC (column 3) test sets.
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